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Abstract We raise some questions about duality theories in global optimization. The main
one concerns the possibility to extend the use of conjugacies to general dualities for studying
dual optimization problems. In fact, we examine whether dualities are the most general con-
cepts to get duality results. We also consider the passage from a Lagrangian approach to a
perturbational approach and the reverse passage in the framework of general dualities. Since
a notion of subdifferential can be defined for any duality, it is natural to examine whether the
familiar interpretation of multipliers as generalized derivatives of the performance function
associated with a dualizing parameterization of the given problem is still valid in the general
framework of dualities.
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1 Introduction

Duality is a general scheme which goes beyond optimization theory and practice. It can be
roughly described as the introduction of an associated problem (the dual problem) to a given
one (the primal problem) in order to draw some information or some help for solving the
primal problem. In optimization, the information one may get may be useful for a numerical
analysis (see [6,11] for instance); it is often under the form of an estimate of the value of
the problem. Adopting the viewpoint of unilateral analysis, we showed in Refs. [68,61] that
one-sided concepts of Lagrangians and perturbations could be used to get such estimates.
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However, our study was limited to the use of conjugacies for which the devices are close to
the usual ones in convex duality (see [5,40,46,47,51,62,63,81,86]).

It is the purpose of the present article to examine the possibility of using dualities in the
sense of Refs. [45,54,81] or in the broad setting of lattices ([12,42,50,54,87]) in duality
theories for optimization. Since the Lagrangian theory essentially consists in an exchange of
order between a minimization and a maximization, and thus does not involve any sophisti-
cated apparatus, we mainly focus our attention on the theory of perturbations. Embedding a
given problem into a family of parametrized problem is often natural and fruitful in terms
of sensibility analysis. Then the relation linking the value (or performance) function p to
its biconjugate is the key to what is called the weak duality inequality. When the conjugate
is defined with the help of a conjucacy, the maximization of the opposite of the conjugate
of p defines a dual problem. Because dualities between lattices of functions can be defined
through generating functions, a dual problem also arises in such a framework. However,
a number of “dualities” considered in the literature are not dualities in the classical sense
evoked above (see [1,9,15,66]...). In Ref. [54] they are called “quasi-dualities” because they
can also be defined by a generating function. Thus, it is tempting to consider duality theo-
ries in the framework of quasi-dualities. Such an apparatus allows to define a dual problem,
and even a bidual problem and to give some links with a Lagrangian approach. However,
weak duality is no more an inequality. Thus, we rather limit our study to the case of what
we call “pseudo-dualities”. They consist in the addition of a reverse mapping to the given
quasi-duality, ensuring an appropriate inequality. The choice of such a mapping may differ;
but when a duality is given, there is a natural one, the reverse duality.

Our general scheme can be applied to the constrained optimization problem

(P) minimize f (x) subject to x ∈ F.

The decision space X has not to be endowed with any special structure and the feasible set
F ⊂ X can be any subset. Also, the objective function f : X → R∞ := R ∪ {∞} may be
an arbitrary function. When F is the value at some base point 0Z of some parameter space
Z of a multimapping � : Z ⇒ X , a natural perturbation of problem (P) is available and a

duality theory can be applied provided one disposes of a duality between R
Z

and some other

function space R
Y
. Such a case contains many special situations, in particular mathematical

programming problems.
In Sect. 2, some concepts and results in the line of the monographs [51,74,82] about gen-

eral dualities are recalled and completed. Applications to the Lagrangian and perturbational
theories are described in Sects. 3 and 4, respectively. Passages between the two approaches
are given in Sect. 5. For the convex case, which serves as a model for the whole theory, we
refer to Refs. [3,4,19,35,47,70,90] for example.

Numerous contributions ([2,13,27,30,31,58,62–67,72–79]...) show the interest of deal-
ing with dualities in a non classical framework and some examples are displayed in Sect. 7.
We hope the present paper will contribute to the usefulness of such a general approach.

2 Dualities and their relatives in optimization

A general notion of duality has been given in Refs. [12,42,50]. It takes place in complete
lattices, or even in general ordered spaces.

123



J Glob Optim (2010) 47:503–525 505

Definition 1 Given ordered (or pre-ordered) sets Y and Z, a duality between Y and Z is a
mapping D : Y → Z noted f �→ f D such that

D

( ∧
i∈I

fi

)
=

∨
i∈I

D( fi ) (1)

for any family ( fi )i∈I in Y for which
∧

i∈I fi := inf i∈I fi exists.

The sets Y and Z are often subsets of the spaces R
Z

and R
Y

of extended real-valued
functions on sets Z and Y , respectively. The case in which R := R ∪ {−∞,+∞} is replaced
by a sublattice such as R+ or {0, 1} is also of interest. When Y and Z are the power sets
P(Y ) and P(Z) of sets Y and Z , respectively, or some subpaces with the induced orders, we
say that P : Y → Z is a polarity if it satisfies (1 ) when the orders in Y and Z are the reverse
orders of inclusion, i.e. if for any family (Ai )i∈I of subsets of Y one has

P

( ⋃
i∈I

Ai

)
=

⋂
i∈I

P(Ai ). (2)

Using the indicator function ιS of a subset S of a set X given by ιS(x) = 0 if x ∈ S,+∞
else and considering the injections A �→ ιA and B �→ ιB of P(Y ) and P(Z) into R

Y
and R

Z
,

respectively as identifications, any polarity can be considered as a special duality between
sublattices of some function spaces.

Polarities abound. They generalize orthogonality. They can be defined by a coupling
function c : Y × Z → R and a fixed real number r by setting

P(A) := {z ∈ Z : ∀y ∈ A c(y, z) ≤ r}.
For instance, the monotone polarity A �→ Aμ from P(Y ) to P(Z), with Y := U × V, Z :=
U × V, where U and V are two spaces paired by a pairing b : U × V → R, has been
introduced by Martínez-Legaz by taking r := 0 and

c((u, v), (u′, v′)) := b(u, v′) + b(u′, v) − b(u, v) − b(u′, v′). (3)

A more general way of constructing a polarity consists in taking r = −1, a subset W of
Y × Z and setting c(y, z) := −ιW (y, z), so that

P(A) = {z ∈ Z : ∀y ∈ A (y, z) ∈ (Y × Z)\W }. (4)

The most studied examples of dualities are conjugacies ([47]): given two sets Y, Z and a
coupling function c : Y × Z → R, the conjugacy associated with c is the map D : Y :=
R

Y → Z := R
Z

given by

f c(z) := − inf
y∈Y

[ f (y) − c(y, z)] = sup
y∈Y

− [ f (y) − c(y, z)] f ∈ Y, z ∈ Z .

Conjugacies have been characterized as dualities D : R
Y → R

Z
for which the relation

D( f + r) = −(r − D( f )) holds for every f ∈ R
Y
, r ∈ R, where the addition of R is

extended to R by setting r + (+∞) = +∞ for all r ∈ R and (−∞) + (−∞) = −∞ and
where r − s := r + (−s); see [47,81].

Let us raise the question: is the notion of duality the most general concept to get duality
results for optimization problems? Part of the sequel is devoted to give an answer to that
question by using a weaker concept introduced in Ref. [54].
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Definition 2 Given ordered (or pre-ordered) sets Y and Z, a hemi-duality between Y and Z
is a pair (D, D′) of antitone mappings D : f �→ f D, D′ : g �→ gD′

from Y into Z and from
Z into Y , respectively such that f DD′ := ( f D)D′ ≤ f for each f ∈ Y.

Recall that D is antitone if f D
1 ≥ f D

2 whenever f1 ≤ f2 and observe that D′ D is homo-

tone, i.e. f DD′
1 ≤ f DD′

2 when f1 ≤ f2. If for each g ∈ Z the relation gD′ D := (gD′
)D ≤ g

also holds, one says that (D, D′) is a Galois correspondence or a Galois connexion (see
[12,50]); in that case the situation is entirely symmetric. When a pair (D, D′) is a Galois cor-
respondence between the complete lattices Y and Z, one can draw important consequences:

∀ f ∈ Y f DD′ D = f D, ∀g ∈ Z gD′ DD′ = gD′

∀ f ∈ Y ∀g ∈ Z
(

f D ≤ g
)

⇐⇒
(

gD′ ≤ f
)

∀ f ∈ Y
(

f DD′ = f
)

⇔
(
∃g ∈ Z : f = gD′)

.

Thus D′ D and DD′ are closure operations.
Hemi-dualities are easy to obtain, as shown in the next proposition which completes [54,

Lemma 3.2]. Here Y is said to be a complete inf-lattice if any (nonempty) family in Y has
an infimum. A subset W of an ordered space Z is said to be inf-cofinal if for all z ∈ Z there
exists some w ∈ W such that w ≤ z.

Proposition 3 Given ordered spaces Y, Z such that Y is a complete inf-lattice and an
antitone map D : Y → Z such that D(Y) is inf-cofinal in Z, there is a greatest antitone
map D′ : Z → Y such that (D, D′) is an hemi-duality, i.e. is such that D′(D( f )) ≤ f for
every f ∈ Y . It is given by

D′(g) =
∧

{ f ∈ Y : D( f ) ≤ g} g ∈ Z. (5)

For any map E : Z → Y such that D(E(g)) ≤ g for all g ∈ Z, one has D′ ≤ E .

If D is a duality, D′ is a duality and (D′, D) is a hemi-duality, i.e. one has D(D′(g)) ≤ g
for every g ∈ Z. Then (D′, D), (D, D′) are Galois correspondences and D′ is the unique
antitone map E : Z → Y such that E(D( f )) ≤ f for every f ∈ Y and D(E(g)) ≤ g for
all g ∈ Z.

Proof Clearly, D′ given by (3) is well defined, antitone and such that D′(D( f )) ≤ f for
each f ∈ Y, so that (D, D′) is a hemi-duality. Moreover, if E : Z → Y is an antitone
map such that E ◦ D ≤ IY , for any g ∈ Z and any f ∈ Y such that D( f ) ≤ g one has
E(g) ≤ E(D( f )) ≤ f, so that E(g) ≤ D′(g).

Given an arbitrary map E : Z → Y such that D ◦ E ≤ IZ , given g ∈ Z, setting
f := E(g), we see that D( f ) ≤ g, hence D′(g) ≤ f by defn of D′. Since g ∈ Z is
arbitrary, that proves that D′ ≤ E .

If D is a duality, for every g ∈ Z, by construction of D′, D(D′(g)) is the supremum of
the family {D( f ) : f ∈ Y, D( f ) ≤ g}, so that D(D′(g)) ≤ g. Moreover, if g = inf i∈I gi ,

then one has D′(g) ≥ D′(gi ) for all i ∈ I and if f is a majorant of the family (D′(gi ))i∈I

one has D( f ) ≤ D(D′(gi )) ≤ gi for all i ∈ I, hence D( f ) ≤ g and D′(g) ≤ f by defn of
D′. Thus D′(g) = supi∈I D′(gi ) : D′ is a duality.

The uniqueness assertion stems from the inequalities E ≤ D′ and D′ ≤ E for any anti-
tone map E : Z → Y such that E(D( f )) ≤ f for every f ∈ Y and D(E(g)) ≤ g for all
g ∈ Z. ��
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It is a classical result that a converse of the last assertion holds: for any Galois correspondence
(D, D′) between complete lattices, the maps D and D′ are dualities.

In the sequel, we restrict our attention to lattices which are functions spaces. Not all
antitone maps between functions spaces, or even dualities, are conjugacies. In order to find
a substitute to the coupling function c, inspired by several examples and the contributions
of Martínez-Legaz and Singer ([42–45]) we introduced in Ref. [54] the following concept in

which Y and Z are arbitrary sets and the orders on R
Y

and R
Z

are the pointwise orders.

Definition 4 An antitone mapping D : R
Y → R

Z
, f �→ f D, is said to be a quasi-duality

if there exists a function G : Y × Z × R → R, called a generating function, which is non-
increasing in its third variable, which satisfies G(y, z,+∞) = −∞ for all (y, z) ∈ Y × Z

and is such that, for any f ∈ R
Y
, z ∈ Z

f D(z) = sup
y∈Y

G(y, z, f (y)). (6)

It has been observed in Refs. [42,45] that any duality D : R
Y → R

Z
has a generating

function G : Y × Z ×R → R, so that it is a quasi-duality. The generating function associated
with a duality D is given for (y, z, r) ∈ Y × Z × R by

G(y, z, r) := (ι{y} + r)D(z), (7)

where ι{y} is the indicator function of the singleton {y}. In fact, for any f ∈ R
Y
, setting

fy(·) := ι{y}(·) + f (y) for y ∈ Y, one has f = inf y∈Y fy, hence

f D(z) = sup
y∈Y

(
fy

)D
(z) = sup

y∈Y
G(y, z, f (y)).

Note that, when D is a duality and G is given by (7), for each (y, z) ∈ Y × Z , G(y, z, ·)
is nonincreasing, l.s.c. and such that G(y, z,+∞) = −∞. Conversely, for any function
G satisfying these properties, formula (6) defines a duality ([42, Thm 3.2]) since whenever
f = inf i∈I fi one has G(y, z, f (y)) = supi∈I G(y, z, fi (y)), hence f D = supi∈I f D

i by
passing to the supremum over y ∈ Y and exchanging the suprema.

When D is a duality, relation (7) defines the unique generating function associated with
D. In the general case of a quasi-duality, there is a greatest generating function associated
with D obtained by taking the supremum of all generating functions associated with D.

When D is a conjugacy with coupling function c, formula (7 ) takes a simple form:

G(y, z, r) = −(r − c(y, z)). (8)

Even in the general case of a quasi-duality, we can get a form of symmetry.

Lemma 5 Any quasi-duality D : R
Y → R

Z
with generating function G gives rise to a

hemi-duality: a reverse mapping E satisfying E(D( f )) ≤ f for all f ∈ R
Y

is obtained by
using the generating function G ′ given by

G ′(z, y, s) := inf
{
r ∈ R : G(y, z, r) ≤ s

}
(9)

by setting

E(g)(y) := sup
z∈Z

G ′(z, y, g(z)). (10)

Moreover E is a duality.
When D is a duality, E is the reverse duality D′ described by relation (5).
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Proof Given f ∈ R
Y
, by defn of f D := D( f ), for every y ∈ Y, z ∈ Z , we have

G(y, z, f (y)) ≤ f D(z), hence G ′(z, y, f D(z)) ≤ f (y). Therefore the map E associated
with G ′ satisfies

E( f D)(y) := sup
z∈Z

G ′(z, y, f D(z)) ≤ f (y).

The second assertion follows from the fact that, for every (z, y) ∈ Z × Y and every
family (si )i∈I , the function G ′(z, y, ·) is nonincreasing and satisfies G ′(y, z,+∞) =
−∞, G ′(z, y, inf i∈I si ) = supi∈I G ′(z, y, si ): setting for t ∈ R, R(t) := {r ∈ R :
G(y, z, r) ≤ t} and observing that R(s) is the intersection over i ∈ I of the intervals
R(si ), one get inf R(s) = supi∈I inf R(si ). Thus G ′ generates a duality.

The last assertion is a consequence of the uniqueness property in Proposition 3 since,

when D is a duality, for any given g ∈ R
Z
, one has D(E(g)) ≤ g: given y ∈ Y, z ∈ Z ,

setting R(y, z) := {r : G(y, z, r) ≤ g(z)}, f := E(g), we have

f (y) ≥ G ′(z, y, g(z)) = inf R(y, z),

hence G(y, z, f (y)) ≤ G(y, z, G ′(z, y, g(z))) = sup{G(y, z, r) : r ∈ R(y, z)} ≤ g(z), so
that D( f )(z) ≤ g(z). ��
The framework we intend to use is introduced in the next definition which brings some
flexibility.

Definition 6 Given sets Y, Z and a base point 0Z in Z , a pseudo-duality between the two

lattices Y := R
Y

and Z := R
Z

is a triple (A, D, G) such that D : Y → Z is a quasi-duality
with generating function G and A : Z → Y is an antitone map such that

D(A(g))(0Z ) ≤ g(0Z ) for all g ∈ Z. (11)

In the sequel, by an abuse of notation, D often stands for the triple (A, D, G). The an-
titone map A is called the ante-duality of D. We observe that not all quasi-dualities are
pseudo-dualities as in general one cannot take for A the reverse duality D′ which satisfies
D′ ◦ D ≤ IY , with IY the identity mapping of Y , but not the relation D ◦ A ≤ IZ nor the
required relation (11). However, every duality is a pseudo-duality when one takes A = D′.

A standard way to get a pseudo-duality is described in the following statement whose
proof is obvious (under its assumptions one even has D ◦ A ≤ IZ ).

Lemma 7 Let A : R
Z → R

Y
be a quasi-duality with generating function F and let D := A′

be the reverse map given by Proposition 3. Then the triple (A, D, F ′) is a pseudo-duality,
F ′ being given as in (9):

F ′(y, z, s) := inf{r ∈ R : F(z, y, r) ≤ s}.
Let us recall from Proposition 3 that when D ◦ A ≤ IZ , then, one has D′ ≤ A.

Since for a pseudo-duality the base point 0Z of Z plays a special role, let us look for condi-
tions on the generating function G of a quasi-duality D which enable to get a pseudo-duality.
Let us say that a quasi-duality D (or rather its generating function G) is quasi-pointed if it
satisfies the assumption

(Q) G(y, 0Z , r) ≤ −r for all r ∈ R, y ∈ Y

and that it is pointed if it satisfies the assumption

(P) G(y, 0Z , r) = −r, G ′(0Z , y, s) ≥ −s for all r, s ∈ R, y ∈ Y.
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Condition (Q) is satisfied whenever c(y, 0Z ) ≤ 0 for all y ∈ Y as then G is given by relation
(8): G(y, z, r) = −(r − c(y, z)). In particular, the conjugacy associated with a polarity is
always quasi-pointed.

Condition (P) is satisfied if D is the conjugacy associated with a coupling function c :
Y × Z → R, satisfying

(S) c(y, 0Z ) = 0 for all y ∈ Y,

Let us note that (S) is equivalent to

(P′) sup
y∈Y

G(y, 0Z , f (y)) = sup
y∈Y

− f (y) for all f ∈ R
Y
,

while (Q) is equivalent to the inequality

(Q′) sup
y∈Y

G(y, 0Z , f (y)) ≤ sup
y∈Y

− f (y) for all f ∈ R
Y
.

Let us also observe that in (P) we have in fact G ′(0Z , y, s) = −s since by relations (9) and
(Q), for all y ∈ Y, s ∈ R we get

G ′(0Z , y, s) ≤ −s.

The following statement shows that condition (P) enables to reach our aim.

Proposition 8 If D, or rather (D, G), is a pointed quasi-duality from R
Y

to R
Z

, then

(E, D, G) is a pseudo-duality, E : R
Z → R

Y
being given by relations (9) and (10).

Proof Given g ∈ R
Z

, for f := E(g), we get, by (P),

inf
y∈Y

f (y) := inf
y∈Y

E(g)(y) := inf
y∈Y

sup
z∈Z

G ′(z, y, g(z)) ≥ inf
y∈Y

G ′(0Z , y, g(0Z )) ≥ −g(0Z )

hence

D(E(g))(0Z ) := sup
y∈Y

G(y, 0Z , f (y)) ≤ sup
y∈Y

− f (y) ≤ g(0Z ).

��
Let us give a generalization of the Fenchel-Moreau Theorem to quasi-dualities. For such a
purpose, let us introduce the family AG := {ay,r := G(y, ·, r) : y ∈ Y, r ∈ R} of G-affine
functions (or generalized affine functions if there is no ambiguity about G) on Z . A function

g ∈ R
Z

which can be represented as the supremum of a family Ag ⊂ AG will be called
G-convex; and we write g ∈ �G(Z) or �D(Z) by an abuse of notation (which is justified
when D is a duality):

g ∈ �G(Z) ⇔ ∃ Ag ⊂ AG : g = sup{a : a ∈ Ag}.
Of course, we can take Ag := AG(g) := {a ∈ AG : a ≤ g}. Similar defns and notation
can be given for the space Y. The Fenchel-Moreau theorem relates two ways of introducing
G-convex functions.

Theorem 9 The image of a quasi-duality D : R
Y → R

Z
is contained in the set �G(Z)

of G-convex functions and coincides with it if D is a duality. The image of E : R
Z → R

Y

coincides with �G ′(Y ).
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If D is a duality, for any function g ∈ R
Z
, the biconjugate gD′ D coincides with the

AG-convex hull coAG (g) of g given by:

coAG (g)(z) = sup{ay,r (z) : ay,r ∈ AG , ay,r ≤ g} (z ∈ Z). (12)

In particular, if g ∈ �G(Z) then one has g = gD′ D .

Of course, when D is a duality, similar results hold by interchanging the roles of Y and
Z , G ′ replacing G.

Proof Clearly, if g := D( f ) for some f ∈ R
Y
, we have g = supy∈Y G(y, ·, f (y)) ∈ �G(Z).

Conversely, suppose D is a duality and let g ∈ �G(Z), so that there exists a family ((yi , ri ))i∈I

such that g = supi∈I G(yi , ·, ri ). For y ∈ Y, let us set I (y) := {i ∈ I : yi = y}, f (y) :=
inf{ri : i ∈ I (y)}, with the usual convention that inf ∅ = +∞. Then, I being the union over
y ∈ Y of the sets I (y), one gets g = D( f ) since for all z ∈ Z one has

g(z) = sup
y∈Y

sup
i∈I (y)

G(yi , ·, ri ) = sup
y∈Y

G(y, z, f (y)).

The assertion about the image of E stems from the fact that E is a duality.

Now suppose D is a duality and let g ∈ R
Z

. Since g ≥ gD′ D = supy∈Y G(y, ·, gD′
(y)),

setting r(y) := gD′
(y), we have ay,r(y) ≤ g and supy∈Y ay,r(y) = gD′ D, hence gD′ D ≤

sup{a : a ∈ AG(g)}, with AG(g) := {a ∈ AG : a ≤ g}, as above. On the other hand,
if a := ay,r ∈ AG(g), by defn of G ′, for all z ∈ Z we have G ′(z, y, g(z)) ≤ r since
G(y, z, r) ≤ g(z). Thus, gD′

(y) := supz∈Z G ′(z, y, g(z)) ≤ r. Since G(y, z, ·) is nonin-
creasing, it follows that ay,r (z) := G(y, z, r) ≤ G(y, z, gD′

(y)) ≤ gD′ D(z). Thus, sup{a :
a ∈ AG(g)} ≤ gD′ D and equality holds. In particular, if g ∈ �G(Z), then one has g =
sup{a : a ∈ AG(g)} = gD′ D . ��

In the sequel we say that g ∈ R
Z

is (exactly) G-convex at some z ∈ Z if there exists some
a ∈ AG(g) such that a(z) = g(z). Of course, if g is G-convex at every point of Z , then g is
G-convex.

The following definition extends to quasi-dualities and pseudo-dualities the notion of sub-
differential associated with a duality introduced in Ref. [45, Def.1.2]. We refer to that paper
for the motivations of such a choice; see also [5,22]. We start with the case of a function
defined on Z , as the defn seems to be more natural in that case and as it is what we shall
use. Note that here we are making an abuse of language and notation since uniqueness of the
generating function G associated with a quasi-duality is not ensured.

Definition 10 Given a quasi-duality D associated with a generating function G, the D-sub-

differential of g ∈ R
Z

at z is defined by

∂ Dg(z) = {y ∈ Y : G(y, z, gD′
(y)) = g(z)}. (13)

Similarly, the D-subdifferential of f ∈ R
Y

at y is defined by

∂ D f (y) = {z ∈ Z : G ′(z, y, f D(z)) = f (y)}. (14)

If (A, D, G) is a pseudo-duality, the A-subdifferential of g ∈ R
Z

at z is defined by

∂ Ag(z) = {y ∈ Y : G(y, z, g A(y)) = g(z)}. (15)
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Since supy∈Y G(y, 0Z , g A(y)) = g AD(0Z ) ≤ g(0Z ) in the case of a pseudo-duality, we have
the obvious result which follows. It shows that subdifferentials associated with pseudo-dual-
ities are more interesting than subdifferentials associated with quasi-dualities.

Proposition 11 Let (A, D, G) be a pseudo-duality, let 0Z ∈ Z and let g ∈ R
Z
. Then, every

y ∈ ∂ Ag(0Z ) is a maximizer of the function G(·, 0Z , g A(·)) and g is G-convex at 0Z . Con-
versely, if g is G-convex at 0Z , then every maximizer of the function G(·, 0Z , g A(·)) is in
∂ Ag(0Z ).

3 Sub-Lagrangians and multipliers

The Lagrangian theory is quite simple, and it does not use the apparatus of duality expounded
above. However, we will see that a natural means to get Lagrangians is to use dualities or
pseudo-dualities. Moreover, the idea of using abstract convexity in the study of Lagrangians
has been extensively exploited ([5,17,24,25,28,32,33,37,46,47,51,56,57,63,65,69,78]...).
Here we closely follow [68]. Let us consider the constraint optimization problem

(P) Minimize f (x) x ∈ F,

where F is some nonempty subset of a set X and f : X → R∞ := R∪{+∞} is finite at some
point of the feasible set F. This problem is equivalent to the unconstrained minimization of
fF := f + ιF on X, where ιF is the indicator function of F. Because fF is difficult to
deal with, it may be of interest to replace it by a family (�y)y∈Y of simpler minorants. Then,
setting L(x, y) := L y(x) := �y(x), one disposes of the estimate

sup
y∈Y

inf
x∈X

�y(x) ≤ inf
x∈X

fF (x)

which follows from the inequality

sup
y∈Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

L(x, y) (16)

valid for any function L : X ×Y → R. When the computation of the infimum of �y is simple
enough, one gets an estimate of the value of (P) by solving the Lagrangian dual problem

(DL) maximize dL(y) y ∈ Y,

where the Lagrangian dual function dL is defined by

dL(y) := inf
x∈X

L(x, y). (17)

In Ref. [68] the bifunction L : X ×Y → R is called a sub-Lagrangian of problem (P). When
fF (x) = supy∈Y L(x, y) for all x ∈ X one says that L is a Lagrangian of problem (P). This
requirement is not necessary to get the weak duality inequality

sup(DL) ≤ inf(P) (18)

observed above. One says that there is no duality gap when this inequality is an equality.
This property may occur for a sub-Lagrangian which is not a Lagrangian. It always occurs
when some multiplier is available. Here, the notion of multiplier we adopt is a global notion,
not an infinitesimal one like in Ref. [52].
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Definition 12 An element y of Y is called a multiplier (for the sub-Lagrangian L) if
inf x∈X L(x, y) = infx∈F f (x), or, in other terms, if dL(y) = inf fF (X).

The set of multipliers will be denoted by M (or ML if one needs to stress the dependence on L).
A number of studies have been devoted to obtaining conditions ensuring the no gap property
or the existence of multipliers (see [5,17,32,37,51] for instance). Some forms of convexity
or quasi-convexity implying an infsup property is often involved (see [2,4,14,47,49,80]...).
A prototype of such results is the Sion-Von Neumann minimax theorem which represents a
noticeable step outside the realm of convex analysis. The very defn of a multiplier leads to
the following obvious observation.

Proposition 13 The set M of multipliers coincides with the set S∗
L of solutions to the dual

problem (DL ) whenever there is no duality gap. This occurs when M is nonempty.

Thus, when a multiplier is available, one gets the value of problem (P) by solving the
unconstrained problem

(Qy) minimize L(x, y) x ∈ X

which is easier to solve than (P) in general. In fact, much more can be expected, as shown
in the following statement.

Proposition 14 ([68, Prop. 1.2]) Suppose L is a sub-Lagrangian of (P). If x ∈ X belongs
to the set S of solutions to (P) and if y ∈ M, then x belongs to the set Sy of solutions to (Qy)
and L(x, y) = fF (x). Conversely, given y ∈ Y, if x ∈ Sy and if L(x, y) = fF (x), then
x ∈ S and y ∈ M.

When the assumptions of the preceding statement are satisfied and when L(x, y) is finite,
one can show that (x, y) ∈ X × Y is a saddle-point of L on X × Y in the sense that for any
(x, y) ∈ X × Y one has

L(x, y) ≤ L(x, y) ≤ L(x, y). (19)

It is well-known that multipliers may exist while the primal problem (P) has no solution.
It has been observed in Ref. [68] that the situation is symmetric: turning the dual problem

(DL ) into a minimization problem

(P∗
L) minimize − dL(y) y ∈ Y

called the adjoint problem, one can note that −LT given by −LT (y, x) := −L(x, y) for
(y, x) ∈ Y × X is a Lagrangian of (P∗

L ) since supx∈X −L(x, y) = −dL(y) for any y ∈ Y
and the bi-adjoint problem

(P∗∗
L ) minimize − dL L(x) := sup

y∈Y
L(x, y) x ∈ X

coincides with (P) when L is a Lagrangian. In the general case (P∗∗
L ) may be simpler than

(P) and its value is such that

sup(DL) ≤ inf(P∗∗
L ) ≤ inf(P).

One always has (P∗∗∗
L ) = (P∗

L ). The following statement is a direct application of the preced-
ing proposition to the adjoint problem.
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Corollary 15 When sup(DL) = inf(P∗∗
L ), the multipliers of the adjoint problem (P∗

L ) are
the solutions of (P∗∗

L ). In particular, when L is a Lagrangian and when there is no duality
gap, the multipliers of the adjoint problem (P∗

L ) are the solutions of (P).

An illustration of the Lagrangian theory is offered by the familiar case of linear (conical)
programming, in which X and Z are normed vector spaces endowed by the preorders ≥B, ≥C

induced by closed convex cones B and C respectively, f is a continuous linear form c on X
and the feasible set is given by

F := {x ∈ X : x ≥B 0, Ax ≥C b}
where A is a continuous linear map from X to Z and b ∈ Z . Taking Y := Z∗ endowed with
the order induced by the dual cone C⊕ := {y ∈ Y : ∀z ∈ C 〈y, z〉 ≥ 0} of C, the Lagrangian
L is given by

L(x, y) := 〈c, x〉 + 〈y, b − Ax〉 for (x, y) ∈ B × C⊕,

L(x, y) := +∞ for (x, y) ∈ (X\B) × C⊕,

L(x, y) := −∞ for (x, y) ∈ B × (Y\C⊕).

Then, the dual problem turns out to be of a similar form:

(DL) maximize 〈y, b〉 AT y ≥B⊕ c, y ≥C⊕ 0,

where B⊕ is the dual cone of B.

4 Sub-perturbations

As is well known, another device to get duality results is the theory of perturbations. It derives
from the observation that many optimization problems are not isolated but are part of fami-
lies depending on some parameters. As an example, a firm wanting to maximize its profit (or
minimize its losses) may take into account the evolution of prices on the market or perform
some changes in the production capacity or in the number of employees. As in Ref. [68] we
give a one-sided character to the theory.

The perturbational approach assumes that one disposes of a parameter space Z and of a
function P : X × Z → R which represents a perturbation of the given problem in the sense
that for some base point 0Z of the parameter space Z one has P(x, 0Z ) = fF (x) for all
x ∈ X, where as above, fF is the extended objective function given by fF := f + ιF . It
has been observed in Ref. [68] that this condition can be relaxed by just requiring that the
function P : X × Z → R is a sub-perturbation of (P), i.e. is such that P(x, 0Z ) ≤ fF (x)

for all x ∈ X. One associates to P the performance (or value) function p given by

p(z) = inf
x∈X

P(x, z). (20)

Suppose there exists a pseudo-duality D : R
Y → R

Z
with generating function G on Y ×Z×R

and ante-duality A. The expression of the conjugate pAD of pA using the generating function
G of D leads to the perturbational dual problem

(DP ) maximize dP (y) := G
(

y, 0Z , pA(y)
)

over y ∈ Y.

In fact, one has

sup
y∈Y

dP (y) = sup
y∈Y

G(y, 0Z , pA(y)) = pAD(0Z ) ≤ p(0Z )
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and one gets the weak duality inequality

sup(DP ) ≤ inf(P). (21)

When D is just a quasi-duality, in (DP ) we replace the function pA by pD′
. Then, the duality

gap inf(P) − sup(DP ) is not necessarily a nonnegative number. This is the reason why we
prefer to use pseudo-dualities rather than quasi-dualities. On the other hand, using Lemma

7, one can use a quasi-duality A : R
Z → R

Y
with generating function F and take for D the

reverse quasi-duality associated with G := F ′.
Since by defn ∂ A p(0Z ) is the set of y ∈ Y such that G

(
y, 0Z , pA(y)

) = p(0Z ), we see
that y ∈ ∂ A p(0Z ) if, and only if, dP (y) = p(0Z ), and when p(0Z ) = inf(P), in particular
when P is a perturbation, if and only if, there is no duality gap and y is a solution to (DP ).

When D is just a quasi-duality, only part of this assertion is valid: we still have

y ∈ ∂ D p(0Z ) ⇐⇒ dP (y) = p(0Z ).

If D is pointed, the objective dP of (DP ) satisfies

dP (y) = −pA(y). (22)

When D is the conjugacy associated to a coupling function c, the objective dP of (DP ) can
be written

dP (y) = − (
pc(y) − c(y, 0Z )

)
. (23)

Moreover dP (y) = c(y, 0Z )− pc(y) when c(·, 0Z ) is a finitely valued function; in particular
dP (y) = −pc(y) when c(·, 0Z ) = 0.

Transforming the problem (DP ) into a minimization problem, we get the perturbational
adjoint problem

(P∗
P ) minimize − G(y, 0Z , pA(y)) y ∈ Y.

Again, a certain symmetry appears, since one can associate to that problem a natural per-
turbation Q : Y × Z → R given by Q(y, z) := −G(y, z, pA(y)). Then, the performance
function q associated with this perturbation is just −pAD : for all z ∈ Z one has

q(z) := inf
y∈Y

Q(y, z) = inf
y∈Y

−G(y, z, pA(y)) = −pAD(z).

Thus, one has −q(z) ≤ p(z) for all z ∈ Z .

Question: Under which conditions can one relate the dual problem of (P∗
P ) to (P)?

A problem related to (P) is obtained by considering the sub-perturbation R(x, z) :=
P AD

x (z), where Px := P(x, ·), and its associated performance function: r(z) := infx∈X

R(x, z). Since E is a duality and E ◦ (D ◦ A) = (E ◦ D) ◦ A ≤ A, the conjugate r E of r is
such that

r E = ( inf
x∈X

P AD
x )E = sup

x∈X
P ADE

x ≤ sup
x∈X

P A
x ≤ ( inf

x∈X
Px )

A = pA.

Thus, the objective G(·, 0Z , r E (·)) of the dual problem associated to the perturbation R is
greater than or equal to the objective G(·, 0Z , pA(·)) of (DP ). When A is a duality with
reverse mapping D and when Px is A-convex at each point for all x ∈ X, the dual problem
associated with R coincides with the one associated with P.
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5 Passages between the two approaches

Let us try to compare the two approaches in the general framework we have adopted. In order

to do so, we assume a pseudo-duality (A, D, G) := D : R
Y → R

Z
is given and a base point

0Z has been chosen in Z .

5.1 From perturbations to Lagrangians

Given a sub-perturbation P : X × Z → R of (P) and x ∈ X , we denote by Px the function
P(x, ·) and by P A

x := (Px )
A its conjugate function; similarly, for a function L : X ×Y → R

we set Lx := L(x, ·).
Proposition 16 Let P be a sub-perturbation of (P), let (A, D, G) be a pseudo-duality with
generating function G. Then the function L given by

L(x, y) := G(y, 0Z , P A
x (y)) x ∈ X, y ∈ Y, (24)

is a Lagrangian of the relaxed problem (P AD) consisting in minimizing over X the function
x �→ P AD

x (0Z ); thus L is a sub-Lagrangian for (P). When P is a perturbation and when
P AD

x (0Z ) = Px (0Z ) for all x ∈ X, L is a Lagrangian for (P).
Moreover, the objective functions of dP and dL of the dual problems associated with P

and L, respectively satisfy dP ≤ dL and one has sup dP ≤ sup dL ≤ p(0Z ). When A is a
duality and G(y, 0Z , ·) is upper semicontinuous for all y ∈ Y, in particular when D is a
pointed duality, the two dual problems have the same objective functions, hence the same
values and the same sets of solutions.

The inequality dL ≥ dP ensures that the dual problem is not deteriorated when passing
from P to L . Thus, when there is no duality gap for (DP ), there is no duality gap for (DL ).

When D is pointed, the Lagrangian L takes the simpler form

Lx = −P A
x . (25)

When D is the conjugacy associated with a coupling function c, since G(y, z, r) = −(r −
c(y, z)) for (x, y, r) ∈ X × Y × R, one has

L(x, y) = −(P A
x (y) − c(y, 0Z )) ∀(x, y) ∈ X × Y.

Note that L is not necessarily a Lagrangian for (P), even when P is a perturbation of (P).

Proof The first assertions are consequences of the following relations

sup
y∈Y

L(x, y) = sup
y∈Y

G(y, 0Z , P A
x (y)) = P AD

x (0Z ) ≤ Px (0Z ) ≤ f (x). (26)

Since for all x ∈ X, y ∈ Y one has Px ≥ p, hence P A
x (y) ≤ pA(y) and since G(y, 0Z , ·) is

nonincreasing, one has

dL(y) := inf
x∈X

L(x, y) = inf
x∈X

G(y, 0Z , P A
x (y)) ≥ G(y, 0Z , pA(y)) = dP (y),

hence supy∈Y dL(y) ≥ supy∈Y dP (y). On the other hand,

sup
y∈Y

dL(y) := sup
y∈Y

inf
x∈X

L(x, y) ≤ inf
x∈X

sup
y∈Y

G(y, 0Z , P A
x (y))

= inf
x∈X

P AD
x (0Z ) ≤ inf

x∈X
Px (0Z ) = p(0Z ).
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Suppose G(y, 0Z , ·) is upper semicontinuous and A is a duality (it is the case when A is the
reverse map E given by Proposition 3). Then, one has

dL(y) := inf
x∈X

G(y, 0Z , P A
x (y)) = G(y, 0Z , sup

x∈X
P A

x (y)) = G(y, 0Z , pA(y)) = dP (y).

��
In the following corollary which follows from (26), we recover a classical statement.

Corollary 17 If P is a perturbation of (P), if D is a duality and if for all x ∈ X the function
Px is D-convex at 0Z , then the function L given by (24) is a Lagrangian for (P).

In the next result we suppose L is the sub-Lagrangian associated with a sub-perturbation P
and a pseudo-duality (A, D, G) and we compare the set M of multipliers of L with ∂ A p(0Z ).

Proposition 18 Let P be a sub-perturbation of (P) and let L be the sub-Lagrangian associ-
ated with P as in (24). Then, M ⊂ ∂ A p(0Z ) and one has p(0Z ) = inf(P) if M is nonempty.
When p(0Z ) = inf(P) one has

∂ A p(0Z ) = M.

Proof Let y ∈ M . Then, by Definition 12, Propositions 16 and 13, one has inf(P) =
sup(DL) ≤ p(0Z ) ≤ inf(P) and equality holds. Moreover, one has dP (y) := G(y
, 0Z , pA(y)) = p(0Z ), hence y ∈ ∂ A p(0Z ).

Now suppose p(0Z ) = inf(P) and let y ∈ ∂ A p(0Z ). Then,

p(0Z ) ≥ dL(y) ≥ dP (y) := G(y, 0Z , pA(y)) = p(0Z )

so that dL(ȳ) = p(0Z ) = inf(P): one gets y ∈ M .

Remark 1 (a) The preceding result can also be deduced from the comparison made above
between ∂ A p(0Z ) and the solution set S∗

P to (DP ).
(b) The equality inf(P) = p(0Z ) may occur for a sub-perturbation which is not a pertur-

bation.

��
5.2 From Lagrangians to perturbations

We have detected some conditions ensuring that a perturbational dual problem can be con-
sidered as a Lagrangian dual problem. Now let us tackle the question: is there is a reverse
passage? Of course, as mentioned in the beginning of the section, we have to suppose a
pseudo-duality is given.

Proposition 19 Let (A, D, G) be a pseudo-duality, where A := E, the map given by (9)
and (10), let L : X × Y → R be a sub-Lagrangian of (P) and let P, p, dP be defined by the
following formulas

P(x, z) := (−Lx )
D(z), p(z) := inf

x∈X
P(x, z), dP (y) := G(y, 0Z , pA(y)), (27)

where Lx = L(x, ·). Then, one has supy∈Y dP (y) ≥ (−dL)D(0Z ). When D is quasi-pointed,
P is a sub-perturbation of (P), in fact, a sub-perturbation of the relaxed problem of mini-
mizing over X the function x �→ k(x) := supy∈Y Lx (y). Moreover, when D is pointed, one

has dP = dK ≥ dL , where K is given by K (x, y) := −(−Lx )
D A(y).
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Thus, when D is quasi-pointed, the value of the dual problem is not deteriorated when
passing from the Lagrangian dual to the perturbational dual.

Proof Since A = E is a duality, the performance function p of P satisfies

pA(y)= ( inf
x∈X

Px )
A(y)= sup

x∈X
(Px )

A(y)= sup
x∈X

(−Lx )
D A(y) ≤ sup

x∈X
(−Lx )(y)= − dL(y).

(28)

Thus, the value of the dual problem associated to P satisfies

sup
y∈Y

dP (y) = sup
y∈Y

G(y, 0Z , pA(y)) ≥ sup
y∈Y

G (y, 0Z ,−dL(y)) = (−dL)D(0Z ).

When D is quasi-pointed, the fact that P is a sub-perturbation for the minimization of k
stems from the relations

∀x ∈ X P(x, 0Z ) := sup
y∈Y

G(y, 0Z ,−Lx (y)) ≤ sup
y∈Y

Lx (y) ≤ fF (x)

which are equalities when L is a Lagrangian and when D is pointed. When D is pointed,
since for all x ∈ X one has −Kx := (−Lx )

D A ≤ −Lx , using (28), one gets, for any y ∈ Y,

dP (y) := G(y, 0Z , pA(y)) = −pA(y) = − sup
x∈X

(−Lx )
D A(y) = inf

x∈X
K (x, y)

= dK (y) ≥ dL(y).

��
The next assertion is a consequence of the relation K = L when −Lx = (−Lx )

D A for all
x ∈ X. Then equality holds in (28) and in the next relation.

Corollary 20 Let D be a pointed pseudo-duality. If for all x ∈ X the function −Lx :=
−L(x, ·) is such that −Lx = (−Lx )

D A, then the dual problems associated with L and the
sub-perturbation P deduced from L coincide: dL = dP .

In the next result we suppose L is a given sub-Lagrangian and P is the sub-perturbation
associated to L via a pseudo-duality (A, D, G) and we compare the set M of multipliers of
L with ∂ A p(0Z ).

Proposition 21 Let L be a sub-Lagrangian of (P) and let P be the sub-perturbation associ-
ated with L as in (27). Then, M ⊂ ∂ A p(0Z ) and one has p(0Z ) = inf(P) if M is nonempty.
When D is pointed, −Lx = (−Lx )

D A for all x ∈ X and when p(0Z ) = inf(P) one has

∂ A p(0Z ) = M.

Proof Since D is a pointed duality, we have sup dL ≤ sup dP ≤ p(0Z ). Let y ∈ M . Then,
since P is a sub-perturbation of (P), we have inf(P) = dL(y) ≤ dP (y) ≤ p(0Z ) ≤ inf(P)

by Definition 12, Propositions 13 and 19, so that equality holds. Moreover, one has p(0Z ) =
dL(y) = dP (y) := G(y, 0Z , pA(y)), hence y ∈ ∂ A p(0Z ).

Now suppose D is pointed, p(0Z ) = inf(P),−Lx = (−Lx )
D A for all x ∈ X and let

y ∈ ∂ A p(0Z ). Then, dL = dP by the preceding corollary and

p(0Z ) ≥ dL(y) = dP (y) := G(y, 0Z , pA(y)) = p(0Z )

so that dL(ȳ) = p(0Z ) = inf(P): one gets y ∈ M .
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Remark 2 (a) The preceding result can also be deduced from the comparison made above
between ∂ A p(0Z ) and the solution set S∗

P to (DP ).
(b) The equality inf(P) = p(0Z ) may occur for a sub-perturbation which is not a pertur-

bation.

��
5.3 Iterating the passages

One may wonder what happens when one makes successively the two passages described
above assuming one is given a pseudo-duality (A, D, G).

First, assume that D is a pointed pseudo-duality such that A = E and let us start with
a sub-Lagrangian L . Then we denote by L P the sub-Lagrangian associated with the per-
turbation P deduced from L via relation (27): for any (x, y) ∈ X × Y , by (25), one has
L P (x, y) := G(y, 0Z , P A

x (y)), hence sup dL P ≥ sup dP ≥ sup dL : the value of the new
dual problem is not deteriorated by this double passage. Moreover, the objective of the new
dual problem is not deteriorated by this double passage since L P (x, y) = −(−Lx )

D A(y) =
K (x, y) ≥ L(x, y).

Now, let us start with a sub-perturbation P, assuming again that D is a pointed pseudo-
duality such that A = E . Let us denote by P L the sub-perturbation associated with the
sub-Lagrangian L deduced from P via relation (25): for any (x, z) ∈ X × Z , by (27), one
has P L(x, z) := (−Lx )

D(z), hence P L(x, 0Z ) = P AD
x (0Z ) ≤ Px (0Z ), so that P L is again

a sub-perturbation of (P) and a perturbation when is a P perturbation and P AD
x = Px .

Thus, when (S) holds, it is possible to characterize the family of sub-perturbations which
are obtained from a sub-Lagrangian and the sub-Lagrangians which are obtained from a
sub-perturbation via the preceding processes.

Corollary 22 When D is the duality associated with a conjugacy c and when (S) holds, a
sub-perturbation P is obtained from a sub-Lagrangian if, and only if, for each x ∈ X one
has Px = Pcc

x and a sub-Lagrangian L is obtained from a sub-perturbation if, and only if,
for each x ∈ X one has Lx = −(−Lx )

cc.

Proof When P is deduced from L by the preceding process, for each x ∈ X one has
Px = (−Lx )

c, hence Pcc
x = (−Lx )

ccc = (−Lx )
c = Px . Conversely, when for each x ∈ X

one has Px = Pcc
x , setting Lx := −Pc

x , one has Px = (−Lx )
c and P is deduced from L by

the preceding process.
The proof of the second assertion is similar. ��

6 Duality in composite or constrained optimization

Given sets X, Y, Z , functions f : X → R∞, h : X × Z → R∞ and a multimap � : X ⇒ Z ,

we consider the problem

(C) minimize f (x) + h(x, w) x ∈ X, w ∈ �(x).

Such a problem arises when considering the minimization of a composite function of the form
x �→ h(x, g(x)) with f := 0, �(·) = {g(·)}. It also appears when minimizing a function
x �→ f (x) under a constraint of the form x ∈ �(C) for some multimap � : Z ⇒ X , when
one takes � = �−1, h(x, z) := ιC (z), where ιC is the indicator function of C. In particular,
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the minimization problem of f under the constraint g(x) ∈ C for some subset C of Z can
be set under this form by taking �(·) = {g(·)} and h(x, z) := ιC (z).

Given a pseudo-duality (A, D, G) between Y and Z , a sub-Lagrangian L associated to
(C) is

L(x, y) := f (x) + inf{G(y, z, h A
x (y)) : z ∈ �(x)},

where hx := h(x, ·). In fact,

sup
y∈Y

L(x, y) ≤ f (x) + inf
z∈�(x)

sup
y∈Y

G(y, z, h A
x (y))

= f (x) + inf
z∈�(x)

h AD
x (z) ≤ f (x) + inf

z∈�(x)
hx (z).

When Z is endowed with an additive group structure, another way of obtaining a dual problem
consists in using the perturbation P given by

P(x, z) := f (x) + inf
w∈�(x)

h(x, w + z). (29)

Assume for simplicity that h(x, z) := k(z) for some k : Z → R∞ and that the pseudo-dual-
ity is the conjugacy given a coupling function c : Y × Z → R. Then the sub-Lagrangian
introduced above is given by

L(x, y) = f (x) + inf
z∈�(x)

c(y, z) − kc(y).

In particular, when �(·) := {g(·)}, the Lagrangian L associated with P takes the familiar
form L(x, y) = f (x)+c(y, g(x))−kc(y). It is not difficult to check that, when c is additive
in its second variable, L coincides with the sub-Lagrangian associated with the perturbation
P given in (29).

We have seen that the passage from P to L is nice when, for all x ∈ X, Px is c-convex.
When Z is a normed vector space, Y is its dual and c is the ordinary coupling, this property is
satisfied when k is convex, proper and lower semicontinuous. Under an additional assump-
tion, one gets that p itself is convex. Let us say that ( f, g) is convexlike (in Ref. [13] it is said
that ( f, g) is epi-convex) if the set

E f,g := {(z, r) ∈ Z × R : ∃x ∈ g−1(z), r > f (x)}
is convex; see [20,23,24] and their references for various forms of such a condition. Note that
E f,g is the image by the symmetry (z, r) �→ (−z, r) of the strict epigraph of the performance
function q given by

q(z) := inf{ f (x) : g(x) + z = 0}.
The following result from Ref. [13] makes clear the interest of the assumption of convexlike-
ness. We present a simple proof.

Lemma 23 If ( f, g) is convexlike, if h is convex, then p is convex. In fact p is the infimal
convolution h�q of q and h.

Proof . The result is justified by the following equalities:

(h�q) (z) = inf
w∈Z

(h(w + z) + q(−w)) = inf
w∈Z

inf{h(g(x) + z) + f (x) : x ∈ X, g(x) = w}

as the last side is just p(z). ��
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7 Examples of duality schemes

Let us present various examples showing the versatility of the two approaches.

Example 1 (conjugacies) As mentioned above, given sets Y, Z and a coupling function c :
Y × Z → R, one gets a generating function G by setting G(y, z, r) := −(r − c(y, z)).
Many dualities using such a simple device, including augmented Lagrangian dualities are
displayed in Refs. [61,64,68,71,74,82] and elsewhere.

Example 2 (conjugacies associated with polarities; see [54,55,60,74,82,87]). Given a subset
P of Y × Z considered as a multimap P : Y ⇒ Z with graph P or a polarity P : 2Y → 2Z

defined by P(S) = ⋂
y∈S P(y), let us associate the coupling function c given by c(y, z) :=

−ιQ(y, z), where ιQ is the indicator function of Q := (Y × Z)\P. Then the conjugate of
f : Y → R is given by

f P (z) = sup{− f (y) : y ∈ Y\P−1(z)} for z ∈ Z , (30)

and a similar formula holds for the conjugate of a function on Z . Such a conjugacy which rep-
resents a versatile tool for the study of various functions appearing in mathematical economics
has peculiar properties. The main one is the property that the sublevels of the conjugate of a
function f are easily determined.

Proposition 24 ([60,81,87]) For any extended real-valued function f on Y, the conjugate
f P of f is P-quasiconvex in the sense that for each r ∈ R the sublevel set [ f P ≤ r ] is
P-convex, i.e. in P(2Y ). More precisely, one has

[ f P ≤ r ] = P([ f < −r ]). (31)

Example 3 (radiant duality, [53,60,75,83–85,88,89]) In the case Y and Z are n.v.s. in dual-
ity via a continuous bilinear form 〈·, ·〉, one can take P∧ := {(y, z) : 〈y, z〉 < 1} or
P� := {(y, z) : 〈y, z〉 ≤ 1}. The corresponding conjugacies are adapted to radiant functions,
i.e. quasi-convex functions whose sublevel sets are convex and contain 0. The subdifferential
∂∧ associated to P∧ is given by

∂
∧

f (z) := {y ∈ Y : 〈y, z〉 ≥ 1, f (z) ≥ f (z) ∀z ∈ [y ≥ 1]}
for f ∈ R

Z , z ∈ Z . The subdifferential associated to P� seems to be of less interest.
Associating to P� the ante-duality P∧ may be a means to increase its value.

Example 4 (musical and financial quasi-dualities, [1,7–10,59,67,66])Given a normed vec-
tor space Y with dual space Y ∗, the following conjugates have been studied in several papers.
For f : Y → R, z := (p, q) ∈ Z := Y ∗ × R, let 0Z := (0, 0) and

f 	(p, q) := sup {p.z : z ∈ [ f < q]} ,

f 
(p, q) := sup {p.z : z ∈ [ f ≤ q]} ,

f ÷(p, q) := sup {p.z − f (z) : z ∈ [ f < q]} ,

f %(p, q) := sup {p.z − f (z) : z ∈ [ f ≤ q]} .

The maps f �→ f 	, f �→ f ÷ are dualities. The maps f �→ f 
, f �→ f % are quasi-dualities,
but not dualities. However, they can be taken as natural ante-dualities. Generating functions
for these quasi-dualities can be given explicitely by

G	(y, p, q, r) = p.y − ι[−∞,q)(r), G
(y, p, q, r) = p.y − ι[−∞,q](r),

G÷(y, p, q, r) = p.y − r − ι[−∞,q)(r), G%(y, p, q, r) = p.y − r − ι[−∞,q](r).
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The reverse generating functions deduced from relation (9) are given by

G ′
	(p, q, y, s) = G ′


(p, q, y, s) = q − ι[−∞,0](s − p.y),

G ′÷((p, q), y, s) = G ′
%(p, q, y, s) = q ∧ (p.y − s)

We observe that these generating functions are quasi-pointed, but not pointed.

Example 5 (integral duality, [2,13]). The duality theory of convex integral functionals has
been devised by R.T. Rockafellar about four decades ago. Here we would like to expound
some results due to Bourass and Giner in [13] for nonconvex integral functionals and point
out their relationships with what precedes.

Recall that if (S, T , μ) is a measured space and if E is a separable Banach space, a subset
X of the space L0(S, E) of measurable maps from S to E is said to be decomposable if for
any f, g ∈ X and T ∈ T one has χS\T f +χT g ∈ X, where, for a subset R of S, χR denotes
the characteristic function of R.

Given a measurable integrand f : S × E → R, the integral functional I f : L0(S, E) → R

is defined by

I f (x) := I ( f ◦ x) :=
∫
S

f (s, x(s))dμ,

where the integral is the infimum of the integrals of the elements v of L1(S) majorizing
f ◦ x := f (·, x(·)). Let us recall the following result which uses the fact that the set L0(S)

of measurable functions on S is a complete inf-lattice: any family ( fi )i∈I of L0(S) has an
infimum f = L0 − inf( fi ).

Proposition 25 ([13]) Given a measurable integrand f and a decomposable set X such that
inf x∈X I f (x) < ∞, one has

inf
x∈X

I f (x) =
∫
S

L0 − inf
x∈X

( f ◦ x)dμ.

Let X and Y be two decomposable subsets of L0(S). One says that X is rich in Y if for
any y ∈ Y there exists a μ-finite covering (Sn) of S and a sequence (xn) of X such that
1Sn y = 1Sn xn for all n ∈ N.

Proposition 26 Let f be a measurable integrand, T being μ-complete and let M : S ⇒ E
be a measurable multifunction. Then for any decomposable set X which is rich in the set
L0(M) of measurable selections of M one has

inf
x∈X

I f (x) =
∫
S

inf
e∈M(s)

f (s, e)dμ.

This result stems from the fact that

L0 − inf
x∈X

( f ◦ x)(s) = inf
e∈M(s)

f (s, e) a.e.

In the sequel we suppose T is μ-complete and μ is atomless. Given measurable integrands
f, g1, ..., gn : S × E → R, using the Lyapunov convexity theorem one can prove the
following result.
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Proposition 27 Let M : S ⇒ E be a measurable multifunction. Then for any decomposable
set X which is rich in the set L0(M) of measurable selections of M, the pair (I f , Ig) is
convexlike on X.

Let us apply what precedes to the optimization problem

(I) minimize I f (x) + h(Ig(x)) x ∈ X,

where f, g := (g1, ..., gn) are measurable integrands, X is a decomposable subset of
L0(S, E) which is rich in the set L0(M) of measurable selections of M and h : R

n →
R∪{+∞} is a convex function. We suppose the value inf(I) of (I) is finite.

Proposition 28 Suppose cl(R+(dom h−g(dom f ))) is a vector subspace of R
n . Then strong

duality holds and

inf(I) = max{I (�M (y)) − h∗(y) : y ∈ R
n},

where

�M (y)(s) = inf{ f (s, e) + 〈y, g(s, e)〉 : e ∈ M(s) ∩ dom g(s, ·)}
This result reduces the search of the value of (I) to the solution of a finite dimensional
maximization problem. In particular, when h is the indicator function of the negative cone of
R

n, a Slater type condition ensures the existence of multipliers. A number of consequences
can be drawn from that result, in particular for the nonsmooth analysis of integral functionals
(see [26]).

Other examples of duality schemes are given in Refs. [5,16,27,34,36,38,39,41,46,54,56,
68,74–85]for instance.
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